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We study noise-induced switching of a system close to bifurcation parameter values where the number

of stable states changes. For non-Gaussian noise, the switching exponent, which gives the logarithm of the

switching rate, displays a non-power-law dependence on the distance to the bifurcation point. This

dependence is found for Poisson noise. Even weak additional Gaussian noise dominates switching

sufficiently close to the bifurcation point, leading to a crossover in the behavior of the switching exponent.

DOI: 10.1103/PhysRevLett.104.140601 PACS numbers: 05.40.Ca, 05.70.Ln, 72.70.+m

Physical systems display generic features near bifurca-
tion parameter values where the number of stable states
changes. In this range the dynamics is controlled by a slow
variable, a soft mode. Its noise-induced fluctuations are
comparatively large. They ultimately lead to switching of
the system from the stable state. Close to a bifurcation
point the switching rate W becomes appreciable even
where far from this point it is exceedingly small, for a
given noise level (for example, for given temperature). The
high sensitivity of the rate to the system parameters has
been broadly used to determine parameters of Josephson
junctions and Josephson junction based systems [1–4],
nanomagnets [5–7], mechanical nanoresonators [8], and
recently in quantum measurements [9–11].

The analysis of switching conventionally relies on the
assumption that the underlying noise is Gaussian. Then the
switching exponentQ, i.e., the exponent in the expression
for the switching rateW / expð�QÞ, displays a power-law
dependence on the distance to the bifurcation point in the
parameter space �, Q / �� [1,12,13]. For systems in
thermal equilibrium, � ¼ 3=2 for a saddle-node bifurca-
tion and � ¼ 2 for a pitchfork bifurcation. This applies also
to systems far from equilibrium [14,15].

Recently, there has been much interest in large fluctua-
tions and switching induced by non-Gaussian noise [16–
19]. Such switching can be used to determine the noise
statistics [20–26]. However, the features of the switching
rate near bifurcation points have not been explored. Yet,
one may expect that the � dependence of the switching
exponent will differ from that for a Gaussian noise and will
be very sensitive to the noise statistics.

In this Letter we study the behavior of the switching
exponent Q for systems driven by Poisson noise. Such
noise is often encountered in photon statistics and in the
statistics of current in mesoscopic conductors. We show
that the scaling is not described by a simple power law, and
the overall � dependence of Q is much weaker than for

Gaussian noise. Surprisingly, if in addition to Poisson noise
the system is driven even by a comparatively weak
Gaussian noise, sufficiently close to the bifurcation point
this noise dominates and there occurs a crossover to the
standard scaling of Q for Gaussian noise.
Generally, one would expect that, unless it is very weak,

a Poisson noise would make a stronger effect on the
switching rate than a Gaussian noise. Because switching
is a rare event on the scale of the characteristic relaxation
time of the system tr, it requires a large fluctuation, whose
probability is determined by the tail of the noise distribu-
tion. Such a tail is less steep for a Poisson noise than for a
Gaussian noise.
The ‘‘takeover’’ of the switching rate by a weak

Gaussian noise close to a bifurcation point is a more subtle
effect. It emerges because of the qualitatively different
ways the fluctuations leading to switching occur for
Gaussian and Poisson noises. This can be understood
from the equation of motion for the slow variable q,

_q ¼ �U0ðqÞ þ fðtÞ: (1)

Here, UðqÞ is the effective potential; for the saddle-node

and pitchfork bifurcations, U ¼ UðSNÞðqÞ and U ¼
UðPFÞðqÞ, respectively [27], with

UðSNÞðqÞ ¼ �q� 1

3
q3; UðPFÞðqÞ ¼ � 1

2
�q2 þ 1

4
q4:

(2)

For �> 0 the system has a stable state qa at the minimum
ofUðqÞ (or two such states, for a pitchfork bifurcation) and
a saddle point qS at the local maximum ofUðqÞ; for � ¼ 0
these states merge together. The results can be immediately

extended also to the case UðPFÞ ! �UðPFÞ, the subcritical
pitchfork bifurcation where for � ¼ 0 a stable state merges
with two unstable states.
The force fðtÞ in Eq. (1) is noise. We will consider the

cases where fðtÞ is a Poisson noise, fðtÞ ¼ fPðtÞ with
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fPðtÞ ¼ g
P

n�ðt� tnÞ, or a white Gaussian noise, fðtÞ ¼
fGðtÞ, hfGðtÞfGðt0Þi ¼ 2D�ðt� t0Þ, or a combination
fðtÞ ¼ fPðtÞ þ fGðtÞ. Both g and D are assumed small,
so that the switching rate W � t�1

r ¼ U00ðqaÞ. The noises
are � correlated in time, because the system motion is
slow; they are also independent of q, since of interest is a
small region in the system phase space [14].

We start with the qualitative picture of Poisson-noise-
induced switching. Here switching occurs only for the
appropriate pulse polarity, ðqS � qaÞ=g > 0. A single
noise pulse shifts the coordinate q by pulse area g.
Switching requires driving q from qa to qS , from where
the system will switch with probability �1=2. The neces-
sary n0 � ðqS � qaÞ=g pulses should occur within time
&tr, so that the system cannot relax back to the attractor
between the pulses. The probability of such pulse sequence
is equal to ð�trÞn0 expð��trÞ=n0!, where � is the average
pulse frequency. By construction, this is the probability to
switch in time tr, it is �Wtr, and thus gives the switching
rate. The corresponding estimate of the switching exponent
Q ¼ QP for n0 � 1; �tr is

Q P � ½ðqS � qaÞ=g� ln½ðqS � qaÞ=g�tr�: (3)

From Eq. (2), jqS � qaj / �1=2, whereas tr � �1�� with
� ¼ 3=2 and � ¼ 2 for the saddle-node and pitchfork

bifurcations. It is seen from Eq. (3) that QP / �1=2 but
contains a large �-dependent logarithmic factor; the ratio
ðqS � qaÞ=g�tr is the large parameter of the theory.

White Gaussian noise fGðtÞ, on the other hand, leads to
switching by providing a force that overcomes the deter-

ministic force U0ðqÞ. From Eq. (2), jU0ðqÞj & ���1=2 for
qa < q < qS . Since the probability of noise realization is
/ exp½�R

dtf2GðtÞ=4D� [28] and the duration of the

needed noise outburst is �tr, by setting this probability
to be �Wtr and fG �U0, we obtain for the switching
exponent Q ¼ QG the familiar expression [13,14]

Q G ¼ C��=D (4)

(C ¼ 4=3 and C ¼ 1=4 for the saddle-node and pitchfork
bifurcation, respectively, see below).

With decreasing �, the distance between the stationary

states qS � qa / �1=2 decreases slower than the determi-

nistic force, jU0ðqÞj & ���1=2. Therefore an outburst of
Poisson noise required for a transition decreases slower
than that of Gaussian noise. Respectively, as seen from
Eqs. (3) and (4), the switching exponent decreases much
slower for Poisson noise than for Gaussian noise. As a
result, even for small Gaussian-noise intensity D � g, the
switching rate is determined by Gaussian noise for suffi-
ciently small �, whereas for larger � it is determined by
Poisson noise.

The crossover between Gaussian- and Poisson-noise-
dominated switching is clearly seen in Fig. 1. It presents
the results on switching near a saddle-node bifurcation
point in the presence of both noises. Close to the bifurca-

tion point the slope of lnQ vs ln� is 3=2, as for Gaussian
noise. However, as � increases, the slope approaches that
for purely Poisson noise.
We now give a quantitative theory of the switching

exponent and find its � dependence for Poisson noise as
well as study the crossover between the Poisson- and
Gaussian-noise asymptotic. As a starting point, we use a
generalized Fokker-Planck equation for the probability
density of the system, which follows from Eq. (1):

@t� ¼ @q½U0ðqÞ�ðqÞ� þD@2q�ðqÞ þ �½�ðq� gÞ � �ðqÞ�:
(5)

The last two terms in this equation describe the effect of the
Poisson noise, i.e., of uncorrelated pulses with average
frequency � that shift the coordinate by g. These terms
have the same form as reaction terms in the master equa-
tion for a reaction system, with q and g being the number
of species and the change of this number in a reaction,
respectively [29], except that in the present case q is
continuous; the analogy applies where g is small compared
to the typical scale of q, in particular, compared to qS �
qa. In this case a Poisson noise in the Langevin equation
mimics reactions in reaction systems.
For small D and g, the switching rate is determined

by the probability current away from the initially occupied
attraction basin [30]. The current is independent of time for
tr � t � W�1 and, to logarithmic accuracy, is given by
the quasistationary probability distribution at the saddle
point. To find this distribution, we solve Eq. (5) in the
eikonal approximation: we set �ðqÞ ¼ exp½�sðqÞ�, as-
sume that sðqÞ � sðqaÞ � 1, and keep the leading order
terms in @qs [for example, we disregard @2qs compared to

ð@qsÞ2]. This leads to the equation for sðqÞ of the form

−2 −1.5 −1 −0.5
1

2

3

4

ln η

ln
 Q

 

Poisson
Composite
Gaussian
Simulation

FIG. 1 (color online). The crossover of the switching exponent
Q from the Poisson-noise- to Gaussian-noise-dominated behav-
ior with the decreasing distance � to the saddle-node bifurcation
point. The solid line shows the result of Eqs. (6) and (7) for the
Gaussian-noise intensity D ¼ 0:009, the average Poisson pulse
frequency � ¼ 0:09, and the Poisson pulse amplitude g ¼ 0:185;
the data points are the results of numerical simulations in which
Q was found from W using the Gaussian-noise prefactor, W �
ð�1=2=�Þ expð�QÞ. The dashed lines and the dash-dotted lines
were obtained from Eqs. (6) and (7) by setting D ¼ 0 or g ¼ 0,
respectively.
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Hðq; @qsÞ ¼ 0, where

Hðq; pÞ ¼ �pU0ðqÞ þDp2 � �½1� expðgpÞ�: (6)

Equation (6) maps the problem of the quasistationary
distribution of the fluctuating system onto the problem of
Hamiltonian dynamics of an auxiliary conservative system
with coordinate q, momentum p, and HamiltonianHðq; pÞ.
The switching exponent is Q ¼ sðqSÞ � sðqaÞ, or

Q ¼
Z ~qS

~qa

pðqÞdq: (7)

Here, ~qa; ~qS are the stationary states shifted to allow for the
nonzero mean of the Poisson noise, ~qi � qi � �g=U00ðqiÞ
with i ¼ a;S. The momentum pðqÞ in Eq. (7) is the non-
trivial solution of equation Hðq; pÞ ¼ 0; it gives the tra-
jectory of the auxiliary system which goes from ~qa to ~qS .
Eqs. (6) and (7) could be obtained also by finding the
probability density of the most probable realization of
noise fðtÞ necessary to drive the system from qa to qS
[19,23,31], albeit such calculation would be somewhat
more involved.

For purely Poisson noise, i.e., where D ¼ 0, for small
pulse area g, the equation Hðq; pÞ ¼ 0 gives p �
g�1flnvðqÞ þ ln½lnvðqÞ�g, where vðqÞ ¼ U0ðqÞ=�g. This
estimate applies provided vðqÞ � 1; we disregarded
higher-order corrections /1= ln½vðqÞ�. The condition
vðqÞ � 1 holds in much of the region between qa and
qS except the immediate vicinities of qa; qS , i.e., for
jq� qaj, jq� qSj � �jgj=U00ðqaÞ. This follows from

the estimate jU0ðqÞj & ���1=2 in the central part of the
interval (qa; qS) and the inequality ðqS � qaÞ=g � �tr ¼
�=U00ðqaÞ discussed above.

Keeping in pðqÞ the leading order term and replacing
U0ðqÞ by its maximal value between qa and qS , from
Eq. (7) we obtain the following estimates for the switching
exponent for the saddle-node and pitchfork bifurcation,
respectively,

QðSNÞ
P � ð2�1=2=gÞ lnð�ðSNÞ�=�gÞ;

QðPFÞ
P � ð�1=2=gÞ lnð�ðPFÞ�3=2=�gÞ: (8)

The parameters �ðSNÞ, �ðPFÞ in the arguments of the loga-

rithms are �1. A simple choice �ðSNÞ ¼ 2 and �ðPFÞ ¼ 1
gives a close agreement of Eq. (8) with the results obtained
by numerically solving equation H ¼ 0 and Eq. (7), which
are shown in Figs. 2 and 3. For the chosen �, the difference
is <10% for Q * 20 and g � 0:1. Equation (8) justifies
the estimate Eq. (3).

The power-law factor �1=2 in Eq. (8) is the same for both
types of the bifurcation points [32]. It is determined simply
by the distance between qS and qa. However, the argu-
ments of the logarithms are different. The logarithmic
factors significantly change the switching exponent com-

pared to a simple power-law scaling QP / �1=2=g. For
example, for the pitchfork bifurcation for g ¼ 0:2 in Fig. 3
the logarithmic factor varies from 3.6 for� ¼ 0:5 to 2.2 for
� ¼ 0:2.
The results of the asymptotic theory were compared

with numerical simulations of the system Eq. (1). As
seen from Figs. 2 and 3, they are in excellent agreement.
In determining the switching exponent from the switching
rate W, we used the prefactor in W which coincides with
that for white Gaussian noise [33]. We note that, for the
supercritical pitchfork bifurcation described by the poten-

tial UðPFÞðqÞ in Eq. (1), a unipolar (all pulses of the same
sign) Poisson noise leads to switching from only one of the

two coexisting stable states at the minima of UðPFÞðqÞ. For
the subcritical bifurcation described by the potential

�UðPFÞðqÞ, Poisson noise always leads to decay of a meta-
stable state.

0 0.25 0.5 0.75
0

4

8

12

η

Q
P(P

F
)

g=0.05
g=0.1
g=0.15
g=0.2
g=0.25

FIG. 3 (color online). The switching exponent QðPFÞ
P for a

Poisson noise as a function of the distance � to the bifurcation
point for the pitchfork bifurcation. The mean frequency of noise
pulses is � ¼ 0:05. The solid lines are obtained from a numerical
solution of equation Hðq;pÞ¼0 followed by integration, Eq. (7).
The data points show the results of numerical simulations of
switching; the plotted quantity is lnð�=W�

ffiffiffi
2

p Þ.
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FIG. 2 (color online). The switching exponent QðSNÞ
P for a

Poisson noise as a function of the distance � to the bifurcation
point for the saddle-node bifurcation. The mean frequency of
noise pulses is � ¼ 0:1. The solid lines are obtained from Eq. (7)
using a numerical solution of equation Hðq; pÞ ¼ 0. The data
points show the results of numerical simulations of switching;
the plotted quantity is lnð�1=2=W�Þ.
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In the opposite case of purely Gaussian noise, g ¼ 0, the
nontrivial solution of equation Hðq; pÞ ¼ 0 is p ¼
U0ðqÞ=D. It leads to a power-law dependence of the switch-
ing exponent on � described by Eq. (4) and to the appro-
priate values of the constant C in this equation.

Equation (6) describes quantitatively the crossover from
Poisson- to Gaussian-noise-dominated switching as � ap-
proaches the bifurcation value� ¼ 0. If the Gaussian noise
is much weaker than the Poisson noise, D � g, far from
qa; qS the momentum pðqÞ is close to the Poisson noise
(D ¼ 0) solution provided � is not too small, so that

Mð�Þ � D=g, with Mð�Þ ¼ ���1=2= lnð���1=2=�gÞ (we

use that, near its maximum, jU0j � ���1=2). On the other
hand, where Mð�Þ � D=g the momentum is determined
by the Gaussian-noise (g ¼ 0) solution. The position of the
crossover on the � axis is given by Mð�Þ �D=g. Not
surprisingly, for such � the switching exponents for the
purely Poisson and purely Gaussian noises become of the
same order of magnitude, QP �QG. This argument is
confirmed by the data in Fig. 1.

The situation where a weak Gaussian noise is present
even where other sources of noise are dominating is typical
for practically any physical system. Such noise very often
comes simply from the coupling of the system to a reser-
voir that leads to energy dissipation. The results of this
Letter explain why near bifurcation points there is often
observed the power-law scaling typical for Gaussian noise
even where this noise is comparatively weak.

In conclusion, we have considered noise-induced
switching due to a non-Gaussian noise near two generic
types of the bifurcation points: saddle node and pitchfork.
In contrast to the case of Gaussian noise, where the switch-
ing exponent scales as a power of the distance to the
bifurcation point �, for a non-Gaussian noise the exponent
generally displays a more complicated dependence on �.
We have found it for a Poisson noise, in which case, along
with a power-law factor, the exponent has a large logarith-
mic factor. It turned out that even a weak additional
Gaussian noise becomes the major cause of switching
sufficiently close to the bifurcation point. A qualitative
and quantitative description of the crossover from
Poisson- to Gaussian-noise-controlled switching and of
the � dependence of the switching exponent is in full
agreement with numerical simulations.
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